0000000000008193
AUTHOR
Avelino Vicente
Dark matter in a charged variant of the Scotogenic model
Scotogenic models are among the most popular possibilities to link dark matter and neutrino masses. In this work we discuss a variant of the Scotogenic model that includes charged fermions and a doublet with hypercharge $3/2$. Neutrino masses are induced at the one-loop level thanks to the states belonging to the dark sector. However, in contrast to the standard Scotogenic model, only the scalar dark matter candidate is viable in this version. After presenting the model and explaining some particularities about neutrino mass generation, we concentrate on its dark matter phenomenology. We show that the observed dark matter relic density can be correctly reproduced in the usual parameter spac…
Are the B decay anomalies related to neutrino oscillations?
5 pages.- 2 figures.- v2: 1 ref. added.- v3: matches
Lepton flavor violation beyond the MSSM
Most extensions of the Standard Model lepton sector predict large lepton flavor violating rates. Given the promising experimental perspectives for lepton flavor violation in the next few years, this generic expectation might offer a powerful indirect probe to look for new physics. In this review we will cover several aspects of lepton flavor violation in supersymmetric models beyond the Minimal Supersymmetric Standard Model. In particular, we will concentrate on three different scenarios: high-scale and low-scale seesaw models as well as models with R-parity violation. We will see that in some cases the LFV phenomenology can have characteristic features for specific scenarios, implying that…
Majoron emission in muon and tau decays revisited
9 pages, 4 figures.-- ISI article identifier:000264762400078.-- ArXiv pre-print avaible at: http://arxiv.org/abs/0902.0525
Minimal 3-loop neutrino mass models and charged lepton flavor violation
We study charged lepton flavor violation for the three most popular 3-loop Majorana neutrino mass models. We call these models "minimal" since their particle content correspond to the minimal sets for which genuine 3-loop models can be constructed. In all the three minimal models the neutrino mass matrix is proportional to some powers of Standard Model lepton masses, providing additional suppression factors on top of the expected loop suppression. To correctly explain neutrino masses, therefore large Yukawa couplings are needed in these models. We calculate charged lepton flavor violating observables and find that the three minimal models survive the current constraints only in very narrow …
Bilinear R-parity violation with flavor symmetry
Bilinear R-parity violation (BRPV) provides the simplest intrinsically supersymmetric neutrino mass generation scheme. While neutrino mixing parameters can be probed in high energy accelerators, they are unfortunately not predicted by the theory. Here we propose a model based on the discrete flavor symmetry Lambda(4) with a single R-parity violating parameter, leading to (i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a successful unification-like b-tau mass relation, and (ii) a correlation between the lepton mixing angles theta(13) and theta(23) in agreement with recent neutrino oscillation data, as well as a (nearly) massless neutrino, leading to absence of neutri…
Vector-like leptons: Higgs decays and collider phenomenology
We study the impact of heavy vector-like leptons on several observables in collider and low-energy physics. These states, present in many well-motivated extensions of the Standard Model, can induce lepton flavour violation and non-standard Higgs decays. We study these effects in an effective model inspired by the composite Higgs scenario. After deriving bounds on the mass and production cross-section of the vector-like states using recent LHC data on multilepton searches, we discuss the modification of the Higgs decays to dilepton, diphoton and $Z\gamma$ final states as well as low-energy observables like radiative lepton decays, the anomalous magnetic moment of the muon and the electric di…
High-energy constraints from low-energy neutrino nonstandard interactions
Many scenarios of new physics predict the existence of neutrino Non-Standard Interactions, new vector contact interactions between neutrinos and first generation fermions beyond the Standard Model. We obtain model-independent constraints on the Standard Model Effective Field Theory at high energies from bounds on neutrino non-standard interactions derived at low energies. Our analysis explores a large set of new physics scenarios and includes full one-loop running effects below and above the electroweak scale. Our results show that neutrino non-standard interactions already push the scale of new physics beyond the TeV. We also conclude that bounds derived by other experimental probes, in pa…
Observable flavor violation from spontaneous lepton number breaking
We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as $\mu \to e \, J$, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous $(g-2)_{\mu}$ in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon $g-2$ anomaly would lead to tension with recent astrophysical bou…
Master Majorana neutrino mass parametrization
After introducing a master formula for the Majorana neutrino mass matrix, we present a master parametrization for the Yukawa matrices automatically in agreement with neutrino oscillation data. This parametrization can be used for any model that induces Majorana neutrino masses. The application of the master parametrization is also illustrated in an example model, with special focus on its lepton flavor violating phenomenology.
Leptogenesis with a dynamical seesaw scale
In the simplest type-I seesaw leptogenesis scenario right-handed neutrino annihilation processes are absent. However, in the presence of new interactions these processes are possible and can affect the resulting $B-L$ asymmetry in an important way. A prominent example is provided by models with spontaneous lepton number violation, where the existence of new dynamical degrees of freedom can play a crucial role. In this context, we provide a model-independent discussion of the effects of right-handed neutrino annihilations. We show that in the weak washout regime, as long as the scattering processes remain slow compared with the Hubble expansion rate throughout the relevant temperature range,…
Dark matter and LHC phenomenology in a left-right supersymmetric model
Left-right symmetric extensions of the Minimal Supersymmetric Standard Model can explain neutrino data and have potentially interesting phenomenology beyond that found in minimal SUSY seesaw models. Here we study a SUSY model in which the left-right symmetry is broken by triplets at a high scale, but significantly below the GUT scale. Sparticle spectra in this model differ from the usual constrained MSSM expectations and these changes affect the relic abundance of the lightest neutralino. We discuss changes for the standard stau (and stop) co-annihilation, the Higgs funnel and the focus point regions. The model has potentially large lepton flavour violation in both, left and right, scalar l…
LHC diphoton resonance from gauge symmetry
Motivated by what is possibly the first sign of new physics seen at the LHC, the diphoton excess at $750$ GeV in ATLAS and CMS, we present a model that provides naturally the necessary ingredients to explain the resonance. The simplest phenomenological explanation for the diphoton excess requires a new scalar state, $X(750)$, as well as additional vector-like (VL) fermions introduced in an ad-hoc way in order to enhance its decays into a pair of photons and/or increase its production cross-section. We show that the requiered VL quarks and their couplings can emerge naturally from a complete framework based on the $SU(3)_L \otimes U(1)_\mathcal{X}$ gauge symmetry.
Predicting charged lepton flavor violation from 3-3-1 gauge symmetry
7 pages.- 2 figures.- v2: discussion extended
Constrained SUSY seesaws with a 125 GeV Higgs
Motivated by the ATLAS and CMS discovery of a Higgs-like boson with a mass around 125 GeV, and by the need of explaining neutrino masses, we analyse the three canonical SUSY versions of the seesaw mechanism (type I, II and III) with CMSSM boundary conditions. In type II and III cases, SUSY particles are lighter than in the CMSSM (or the constrained type I seesaw), for the same set of input parameters at the universality scale. Thus, to explain $m_{h^0} \simeq 125 GeV$ at low energies, one is forced into regions of parameter space with very large values of $m_0$, $M_{1/2}$ or $A_0$. We compare the squark and gluino masses allowed by the ATLAS and CMS ranges for $m_{h^0}$ (extracted from the …
Spontaneous R-parity violation: Lightest neutralino decays and neutrino mixing angles at future colliders
We study the decays of the lightest supersymmetric particle (LSP) in models with spontaneously broken R-parity. We focus on the two cases that the LSP is either a bino or a neutral singlet lepton. We work out the most important phenomenological differences between these two scenarios and discuss also how they might be distinguished from explicit R-Parity breaking models. In both cases we find that certain ratios of decay branching ratios are correlated with either the solar or the atmospheric (and reactor) neutrino angle. The hypothesis that spontaneous R-Parity violation is the source of the observed neutrino masses is therefore potentially testable at the LHC.
Anomalies in b→s Transitions and Dark Matter
Since 2013, the LHCb collaboration has reported on the measurement of several observables associated to $b \to s$ transitions, finding various deviations from their predicted values in the Standard Model. These include a set of deviations in branching ratios and angular observables, as well as in the observables $R_K$ and $R_{K^\ast}$, specially built to test the possible violation of Lepton Flavor Universality. Even though these tantalizing hints are not conclusive yet, the $b \to s$ anomalies have gained considerable attention in the flavor community. Here we review New Physics models that address these anomalies and explore their possible connection to the dark matter of the Universe. Af…
(g−2)e,μ in an extended inverse type-III seesaw model
There has been a longstanding discrepancy between the experimental measurements of the electron and muon anomalous magnetic moments and their predicted values in the Standard Model. This is particularly relevant in the case of the muon $g\ensuremath{-}2$, which has attracted a remarkable interest in the community after the long-awaited announcement of the first results by the Muon $g\ensuremath{-}2$ collaboration at Fermilab, which confirms a previous measurement by the E821 experiment at Brookhaven and enlarges the statistical significance of the discrepancy, now at $4.2\ensuremath{\sigma}$. In this paper we consider an extension of the inverse type-III seesaw with a pair of vectorlike lep…
Lepton flavor violation in a Z′ model for the b→s anomalies
In recent years, several observables associated to semileptonic $b \to s$ processes have been found to depart from their predicted values in the Standard Model, including a few tantalizing hints of lepton flavor universality violation. In this work we consider an existing model with a massive $Z^\prime$ boson that addresses the anomalies in $b \to s$ transitions and extend it with a non-trivial embedding of neutrino masses. We analyze lepton flavor violating effects, induced by the non-universal interaction associated to the $b \to s$ anomalies and by the new physics associated to the neutrino mass generation, and determine the expected ranges for the most relevant observables.
WCxf: An exchange format for Wilson coefficients beyond the Standard Model
We define a data exchange format for numerical values of Wilson coefficients of local operators parameterising low-energy effects of physics beyond the Standard Model. The format facilitates interfacing model-specific Wilson coefficient calculators, renormalisation group (RG) runners, and observable calculators. It is designed to be unambiguous (defining a non-redundant set of operators with fixed normalisation in each basis), extensible (allowing the addition of new EFTs or bases by the user), and robust (being based on industry standard file formats with parsers implemented in many programming languages). We have implemented the format for the Standard Model EFT (SMEFT) and for the weak e…
LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM
We study the phenomenology of a supersymmetric left-right model, assuming minimal supergravity boundary conditions. Both left-right and (B-L) symmetries are broken at an energy scale close to, but significantly below the GUT scale. Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for superpotential and soft parameters complete at 2-loop order. At low energies lepton flavour violation (LFV) and small, but potentially measurable mass splittings in the charged scalar lepton sector appear, due to the RGE running. Different from the supersymmetric “pure seesaw” models, both, LFV and slepton mass splittings, occur not only in the left-but also in the right slepton sector. …
The Inverse Seesaw Family: Dirac And Majorana
After developing a general criterion for deciding which neutrino mass models belong to the category of inverse seesaw models, we apply it to obtain the Dirac analogue of the canonical Majorana inverse seesaw model. We then generalize the inverse seesaw model and obtain a class of inverse seesaw mechanisms both for Majorana and Dirac neutrinos. We further show that many of the models have double or multiple suppressions coming from tiny symmetry breaking "$\mu$-terms". These models can be tested both in colliders and with the observation of lepton flavour violating processes.
DsixTools 2.0: The Effective Field Theory Toolkit
$\tt DsixTools$ is a Mathematica package for the handling of the Standard Model Effective Field Theory (SMEFT) and the Low-energy Effective Field Theory (LEFT) with operators up to dimension six, both at the algebraic and numerical level. $\tt DsixTools$ contains a visually accessible and operationally convenient repository of all operators and parameters of the SMEFT and the LEFT. This repository also provides information concerning symmetry categories and number of degrees of freedom, and routines that allow to implement this information on global expressions (such as decay amplitudes and cross-sections). $\tt DsixTools$ also performs weak basis transformations, and implements the full on…
General parametrization of Majorana neutrino mass models
We discuss a general formula which allows to automatically reproduce experimental data for Majorana neutrino mass models, while keeping the complete set of the remaining model parameters free for general scans, as necessary in order to provide reliable predictions for observables outside the neutrino sector. We provide a proof of this master parametrization and show how to apply it for several well-known neutrino mass models from the literature. We also discuss a list of special cases, in which the Yukawa couplings have to fulfill some particular additional conditions.
LHC phenomenology of the μνSSM
The $\mu\nu$SSM has been proposed to solve simultaneously the $\mu$-problem of the MSSM and explain current neutrino data. The model breaks lepton number as well as R-parity. In this paper we study the phenomenology of this proposal concentrating on neutrino masses and the decay of the lightest supersymmetric particle (LSP). At first we investigate in detail the $\mu\nu$SSM with one generation of singlets, which can explain all neutrino data, once 1-loop corrections are taken into account. Then we study variations of the model with more singlets, which can generate all neutrino masses and mixings at tree-level. We calculate the decay properties of the lightest supersymmetric particle, assum…
An ultraviolet completion for the Scotogenic model
The Scotogenic model is an economical scenario that generates neutrino masses at the 1-loop level and includes a dark matter candidate. This is achieved by means of an ad-hoc $\mathbb{Z}_2$ symmetry, which forbids the tree-level generation of neutrino masses and stabilizes the lightest $\mathbb{Z}_2$-odd state. Neutrino masses are also suppressed by a quartic coupling, usually denoted by $\lambda_5$. While the smallness of this parameter is natural, it is not explained in the context of the Scotogenic model. We construct an ultraviolet completion of the Scotogenic model that provides a natural explanation for the smallness of the $\lambda_5$ parameter and induces the $\mathbb{Z}_2$ parity a…