6533b7dafe1ef96bd126df8a

RESEARCH PRODUCT

Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection

José D. BermúdezAna Belen RuizMariano LuqueRubén SaboridoEnriqueta Vercher

subject

Mathematical optimization021103 operations researchOptimization problemCrossover0211 other engineering and technologiesEvolutionary algorithm02 engineering and technologyFuzzy logicMulti-objective optimization0202 electrical engineering electronic engineering information engineeringExpected returnPortfolio020201 artificial intelligence & image processingAlgorithmSoftwarePossibility theoryMathematics

description

Graphical abstractDisplay Omitted HighlightsWe consider a constrained three-objective optimization portfolio selection problem.We solve the problem by means of evolutionary multi-objective optimization.New mutation, crossover and reparation operators are designed for this problem.They are tested in several algorithms for a data set from the Spanish stock market.Results for two performance metrics reveal the effectiveness of the new operators. In this paper, we consider a recently proposed model for portfolio selection, called Mean-Downside Risk-Skewness (MDRS) model. This modelling approach takes into account both the multidimensional nature of the portfolio selection problem and the requirements imposed by the investor. Concretely, it optimizes the expected return, the downside-risk and the skewness of a given portfolio, taking into account budget, bound and cardinality constraints. The quantification of the uncertain future return on a given portfolio is approximated by means of LR-fuzzy numbers, while the moments of its return are evaluated using possibility theory. The main purpose of this paper is to solve the MDRS portfolio selection model as a whole constrained three-objective optimization problem, what has not been done before, in order to analyse the efficient portfolios which optimize the three criteria simultaneously. For this aim, we propose new mutation, crossover and reparation operators for evolutionary multi-objective optimization, which have been specially designed for generating feasible solutions of the cardinality constrained MDRS problem. We incorporate the operators suggested into the evolutionary algorithms NSGAII, MOEA/D and GWASF-GA and we analyse their performances for a data set from the Spanish stock market. The potential of our operators is shown in comparison to other commonly used genetic operators and some conclusions are highlighted from the analysis of the trade-offs among the three criteria.

https://doi.org/10.1016/j.asoc.2015.11.005