6533b7dafe1ef96bd126e135

RESEARCH PRODUCT

3D landmark detection for augmented reality based otologic procedures

Raabid HussainAlain LalandeKibrom Berihu GirumCaroline GuigouAlexis Bozorg Grayeli

subject

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]FOS: Computer and information sciences[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Computer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern Recognition[INFO.INFO-IM] Computer Science [cs]/Medical ImagingFOS: Electrical engineering electronic engineering information engineering[INFO.INFO-IM]Computer Science [cs]/Medical Imaging[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Electrical Engineering and Systems Science - Image and Video Processing[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]

description

International audience; Ear consists of the smallest bones in the human body and does not contain significant amount of distinct landmark points that may be used to register a preoperative CT-scan with the surgical video in an augmented reality framework. Learning based algorithms may be used to help the surgeons to identify landmark points. This paper presents a convolutional neural network approach to landmark detection in preoperative ear CT images and then discusses an augmented reality system that can be used to visualize the cochlear axis on an otologic surgical video.

https://hal.archives-ouvertes.fr/hal-02275729/document