6533b7dafe1ef96bd126e187

RESEARCH PRODUCT

Ab initio LCAO study of the atomic, electronic and magnetic structures and the lattice dynamics of triclinic CuWO4

Robert A. EvarestovAleksandr KalinkoAlexei Kuzmin

subject

Materials sciencePolymers and PlasticsCondensed matter physicsMetals and AlloysAb initio02 engineering and technologyTriclinic crystal system021001 nanoscience & nanotechnologyFractional coordinates01 natural sciencesMolecular physicsElectronic Optical and Magnetic MaterialsAtomic orbitalddc:670Linear combination of atomic orbitalsAb initio quantum chemistry methods0103 physical sciencesPhysics::Atomic and Molecular ClustersCeramics and Composites010306 general physics0210 nano-technologySpectroscopyElectronic band structure

description

Abstract The electronic, structural and phonon properties of antiferromagnetic triclinic CuWO 4 have been studied using the first-principles spin-polarized linear combination of atomic orbital (LCAO) calculations based on the hybrid exchange–correlation density functional (DFT)/Hartree–Fock (HF) scheme. In addition, the local atomic structure around both Cu and W atoms has been probed using extended X-ray absorption fine structure (EXAFS) spectroscopy. We show that, by using the hybrid DFT–HF functional, one can accurately and simultaneously describe the atomic structure (the unit cell parameters and the atomic fractional coordinates), the band gap and the phonon frequencies. In agreement with our EXAFS results, the LCAO calculations reproduce a strong distortion of both the CuO 6 and the WO 6 octahedra, which occur due to the first-order and second-order Jahn–Teller effects, respectively. We found that the HF admixture of 13–16%, which is implemented in the PBE0–13% and WCGGA–PBE-16% functionals, produces the best result for CuWO 4 . The calculated properties agree well with the available experimental data provided by diffraction, optical, X-ray photoelectron and Raman spectroscopies.

https://doi.org/10.1016/j.actamat.2012.10.002