6533b7dafe1ef96bd126e28d
RESEARCH PRODUCT
MiR-205-5p inhibition by locked nucleic acids impairs metastatic potential of breast cancer cells.
Alessia LamolinaraMatilde TodaroManuela IezziAntonella De ColaPaola LanutiCosmo RossiVincenzo De LaurenziMarco Marchisiosubject
0301 basic medicineCancer ResearchEpithelial-Mesenchymal Transitionmedicine.medical_treatmentAntagomirSettore MED/50 - Scienze Tecniche Mediche ApplicateImmunologyTransplantation HeterologousOligonucleotidesBreast NeoplasmsBiologyArticleTargeted therapy03 medical and health sciencesCellular and Molecular NeuroscienceMiceBreast cancerErbBCell MovementMice Inbred NODOligonucleotideCell Line TumormicroRNAmedicineGene silencingAnimalsHumansEpithelial–mesenchymal transitionlcsh:QH573-671Neoplasm MetastasisCell ProliferationAnimallcsh:CytologyCancerAntagomirsMicroRNACell Biologymedicine.diseaseNeoplasm MetastasiMicroRNAs030104 developmental biologyCancer researchFemaleStem cellBreast NeoplasmHumandescription
AbstractMir-205 plays an important role in epithelial biogenesis and in mammary gland development but its role in cancer still remains controversial depending on the specific cellular context and target genes. We have previously reported that miR-205-5p is upregulated in breast cancer stem cells targeting ERBB pathway and leading to targeted therapy resistance. Here we show that miR-205-5p regulates tumorigenic properties of breast cancer cells, as well as epithelial to mesenchymal transition. Silencing this miRNA in breast cancer results in reduced tumor growth and metastatic spreading in mouse models. Moreover, we show that miR-205-5p knock-down can be obtained with the use of specific locked nucleic acids oligonucleotides in vivo suggesting a future potential use of this approach in therapy.
year | journal | country | edition | language |
---|---|---|---|---|
2018-07-01 | Cell deathdisease |