6533b7dafe1ef96bd126e29f
RESEARCH PRODUCT
Poly-ADP-Ribose (PAR) as an epigenetic flag
Davide CoronaAnna Salasubject
Poly Adenosine Diphosphate RiboseCancer ResearchHistone-modifying enzymesEpigenetic regulation of neurogenesisDNA MethylationBiologyChromatin Assembly and DisassemblyChromatin remodelingEpigenesis GeneticChromatinHistonesEpigenetics of physical exerciseBiochemistryHistone methylationAnimalsHumansHistone codePARP epigeneticsPoly(ADP-ribose) PolymerasesMolecular BiologyEpigenomicsdescription
Epigenetics is the study of hereditable chromatin modifications, such as DNA methylation, histone modifications, and nucleosome-remodelling, which occur without alterations to the DNA sequence. The establishment of different epigenetic states in eukaryotes depends on regulatory mechanisms that induce structural changes in chromatin in response to environmental and cellular cues. Two classes of enzymes modulate chromatin accessibility: chromatin-covalent modifiers and ATP-dependent chromatin remodelling complexes. The first class of enzymes catalyzes covalent modifications of DNA as well as the amino- and carboxy-terminal tails of histones, while the second uses the energy of ATP hydrolysis to reposition nucleosomes along the chromatin fibers or to incorporate histone variants. Thus, epigenetic modifications are reversible nuclear reactions. In the last decade, many studies have strongly indicated that alterations in epigenetic modifications may contribute to the onset and progression of a variety of human diseases such as cancer. Therefore, the enzymes responsible for these chromatin changes are becoming attractive therapeutic targets.
year | journal | country | edition | language |
---|---|---|---|---|
2009-07-01 | Epigenetics |