6533b7dafe1ef96bd126e344

RESEARCH PRODUCT

Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering.

Francesco LoprestiLuigi BottaSalvatrice RigogliusoGiulio GhersiRoberto Scaffaro

subject

ScaffoldMaterials scienceParticulate leachingPolyestersBiomedical EngineeringCompression molding02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialschemistry.chemical_compoundMicePolylactic acidTissue engineeringChemical gradientMelt mixingSettore BIO/10 - BiochimicaElastic ModulusAnimalsComposite materialPorosityElastic modulusCells CulturedOsteoblastsTissue EngineeringTissue ScaffoldsInterface tissue engineeringPore size gradientSettore ING-IND/34 - Bioingegneria IndustrialeFunctionally graded scaffoldFibroblasts021001 nanoscience & nanotechnologyCoculture Techniques0104 chemical sciencesPolyesterSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsPolycaprolactoneNIH 3T3 Cells0210 nano-technologyPorosity

description

A novel bi-layered multiphasic scaffold (BLS) have been fabricated for the first time by combining melt mixing, compression molding and particulate leaching. One layer has been composed by polylactic acid (PLA) presenting pore size in the range of 90-110µm while the other layer has been made of polycaprolactone (PCL) with pores ranging from 5 to 40µm. The different chemo-physical properties of the two biopolymers combined with the tunable pore architecture permitted to realize monolithic functionally graded scaffolds engineered to be potentially used for interface tissues regenerations. BLS have been characterized from a morphological and a mechanical point of view. In particular, mechanical tests have been carried out both in air and immersing the specimens in phosphate buffered saline (PBS) solution at 37°C, in order to evaluate the elastic modulus and the interlayer adhesion strength. Fibroblasts and osteoblasts have been cultured and co-cultured in order to investigate the cells permeation trough the different layers. The results indicate that the presented method is appropriate for the preparation of multiphasic porous scaffolds with tunable morphological and mechanical characteristics. Furthermore, the cells seeded were found to grow with a different trend trough the different layers thus demonstrating that the presented device has good potential to be used in interface tissue regeneration applications.

10.1016/j.jmbbm.2016.06.021https://pubmed.ncbi.nlm.nih.gov/27442921