6533b7dafe1ef96bd126eb15
RESEARCH PRODUCT
Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea, Amphipoda) to non-host invertebrate predators.
Sébastien MotreuilMarie-jeanne Perrot-minnotNicolas KaldonskiFrank Cézillysubject
[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyAmphipodaFood ChainNepa cinereaMESH : Host-Parasite InteractionsMESH : AstacoideaAstacoideaMESH : Predatory Behaviorhost manipulationPomphorhynchus laevisPredationAcanthocephalaHost-Parasite InteractionsSpecies Specificity[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisMESH : Species SpecificityAnimalsAmphipodaTrophic levelbiologyEcologyMESH : AcanthocephalaPomphorhynchus tereticollistrophic transmissionOrconectes limosusMESH : Amphipodabiology.organism_classificationCrayfishMESH : Food ChainGammarus pulexInfectious DiseasesPredatory BehaviorPolymorphus minutusAnimal Science and ZoologyParasitologyPomphorhynchus laevisMESH : Animalsdescription
SUMMARYPhenotypic alterations induced by parasites in their intermediate hosts often result in enhanced trophic transmission to appropriate final hosts. However, such alterations may also increase the vulnerability of intermediate hosts to predation by non-host species. We studied the influence of both infection with 3 different acanthocephalan parasites (Pomphorhynchus laevis, P. tereticollis, and Polymorphus minutus) and the availability of refuges on the susceptibility of the amphipod Gammarus pulex to predation by 2 non-host predators in microcosms. Only infection with P. laevis increased the vulnerability of amphipods to predation by crayfish, Orconectes limosus. In contrast, in the absence of refuges, the selectivity of water scorpions, Nepa cinerea, for infected prey was significant and did not differ according to parasite species. When a refuge was available for infected prey, however, water scorpion selectivity for infected prey differed between parasite species. Both P. tereticollis- and P. laevis-infected gammarids were more vulnerable than uninfected ones, whereas the reverse was true of P. minutus-infected gammarids. These results suggest that the true consequences of phenotypic changes associated with parasitic infection in terms of increased trophic transmission of parasites deserve further assessment.
year | journal | country | edition | language |
---|---|---|---|---|
2008-04-01 | Parasitology |