6533b7dafe1ef96bd126ed0c
RESEARCH PRODUCT
ESC-Derived BDNF-Overexpressing Neural Progenitors Differentially Promote Recovery in Huntington's Disease Models by Enhanced Striatal Differentiation
Julia LeschikBeat LutzTina ZimmermannFloortje Remmerssubject
0301 basic medicineGene ExpressionBiochemistrychemistry.chemical_compoundMice0302 clinical medicineNeural Stem CellsNeurotrophic factorsGenes Reporterlcsh:QH301-705.5Neuronslcsh:R5-920NeurogenesisCell DifferentiationAnatomyembryonic stem cellsHuntington Diseaselcsh:Medicine (General)NeurogliaLocomotionNeurotrophinHuntington’s diseaseCell SurvivalBiologyMedium spiny neuronArticle03 medical and health sciencesHuntington's diseaseGeneticsmedicinestriatal differentiationAnimalsBrain-derived neurotrophic factorBrain-Derived Neurotrophic FactorCell Biologymedicine.diseaseCorpus StriatumTransplantationDisease Models Animal030104 developmental biologylcsh:Biology (General)chemistrynervous systembiology.proteinNeuroscience030217 neurology & neurosurgeryBiomarkersDevelopmental BiologyQuinolinic acidStem Cell Transplantationdescription
Summary Huntington's disease (HD) is characterized by fatal motoric failures induced by loss of striatal medium spiny neurons. Neuronal cell death has been linked to impaired expression and axonal transport of the neurotrophin BDNF (brain-derived neurotrophic factor). By transplanting embryonic stem cell-derived neural progenitors overexpressing BDNF, we combined cell replacement and BDNF supply as a potential HD therapy approach. Transplantation of purified neural progenitors was analyzed in a quinolinic acid (QA) chemical and two genetic HD mouse models (R6/2 and N171-82Q) on the basis of distinct behavioral parameters, including CatWalk gait analysis. Explicit rescue of motor function by BDNF neural progenitors was found in QA-lesioned mice, whereas genetic mouse models displayed only minor improvements. Tumor formation was absent, and regeneration was attributed to enhanced neuronal and striatal differentiation. In addition, adult neurogenesis was preserved in a BDNF-dependent manner. Our findings provide significant insight for establishing therapeutic strategies for HD to ameliorate neurodegenerative symptoms.
year | journal | country | edition | language |
---|---|---|---|---|
2016-10-01 | Stem Cell Reports |