6533b7dafe1ef96bd126ed73

RESEARCH PRODUCT

Superfluid density and quasi-long-range order in the one-dimensional disordered Bose–Hubbard model

Pietro SilviFerdinand TschirsichRosario FazioRosario FazioMatteo RizziSimone MontangeroMatthias Gerster

subject

Monte Carlo methodGeneral Physics and AstronomyBoundary (topology)FOS: Physical sciencesBose–Hubbard model01 natural sciencesCondensed Matter::Disordered Systems and Neural Networks010305 fluids & plasmasSuperfluidityPhysics and Astronomy (all)Bose glass; disorder-driven phase transition; numerical simulation of quantum many-body systems; Physics and Astronomy (all)0103 physical sciencesnumerical simulation of quantum many-body systemsPeriodic boundary conditionsTensor010306 general physicsPhysicsCondensed Matter::Quantum GasesQuantum PhysicsCondensed matter physicsdisorder-driven phase transitionCondensed Matter::OtherBose glassDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks16. Peace & justiceVariational methodExponentQuantum Physics (quant-ph)

description

We study the equilibrium properties of the one-dimensional disordered Bose-Hubbard model by means of a gauge-adaptive tree tensor network variational method suitable for systems with periodic boundary conditions. We compute the superfluid stiffness and superfluid correlations close to the superfluid to glass transition line, obtaining accurate locations of the critical points. By studying the statistics of the exponent of the power-law decay of the correlation, we determine the boundary between the superfluid region and the Bose glass phase in the regime of strong disorder and in the weakly interacting region, not explored numerically before. In the former case our simulations are in agreement with previous Monte Carlo calculations.

10.1088/1367-2630/18/1/015015https://hdl.handle.net/11384/66822