6533b7dafe1ef96bd126eda9

RESEARCH PRODUCT

Spatiotemporal light-beam compression from nonlinear mode coupling

Alessandro TonelloAlain BarthélémyDaniele ModottoKatarzyna KrupaVincent CoudercGuy MillotStefan Wabnitz

subject

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiberbusiness.industryPhysics::OpticsFOS: Physical sciencesOptical powerLaser pulses; multimode fibers; nonlinear optics; optical fibersLaser01 natural sciencesPulse (physics)law.invention010309 opticsNonlinear systemOpticslaw0103 physical sciencesMode couplingLight beam010306 general physicsbusinessBeam (structure)ComputingMilieux_MISCELLANEOUSPhysics - OpticsOptics (physics.optics)

description

We experimentally demonstrate simultaneous spatial and temporal compression in the propagation of light pulses in multimode nonlinear optical fibers. We reveal that the spatial beam self-cleaning recently discovered in graded-index multimode fibers is accompanied by significant temporal reshaping and up to four-fold shortening of the injected sub-nanosecond laser pulses. Since the nonlinear coupling among the modes strongly depends on the instantaneous power, we explore the entire range of the nonlinear dynamics with a single optical pulse, where the optical power is continuously varied across the pulse profile.

10.1103/physreva.97.043836http://hdl.handle.net/11573/1214662