6533b7dafe1ef96bd126ee55

RESEARCH PRODUCT

A result of Suzuki type in partial G-metric spaces

Peyman SalimiPasquale Vetro

subject

Discrete mathematicsPure mathematicsGeneral MathematicsInjective metric spaceGeneral Physics and AstronomyFixed-point theoremSuzuki fixed point theorem.Fixed pointFixed-point propertyConvex metric spaceMetric spacePartial G-metric spaceSettore MAT/05 - Analisi MatematicaMetric (mathematics)Metric mapFixed and common fixed pointMathematics

description

Abstract Recently, Suzuki [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), 1861-1869] proved a fixed point theorem that is a generalization of the Banach contraction principle and characterizes the metric completeness. Paesano and Vetro [D. Paesano and P. Vetro, Suzuki's type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., 159 (2012), 911-920] proved an analogous fixed point result for a self-mapping on a partial metric space that characterizes the partial metric 0-completeness. In this article, we introduce the notion of partial G-metric spaces and prove a result of Suzuki type in the setting of partial G-metric spaces. We deduce also a result of common fixed point.

10.1016/s0252-9602(14)60004-7http://hdl.handle.net/10447/94955