6533b7dafe1ef96bd126f593
RESEARCH PRODUCT
Nonlinear multivalued Duffing systems
Francesca VetroNikolaos S. PapageorgiouCalogero Vetrosubject
RelaxationMathematics::General TopologyPerturbation (astronomy)34A60 34B1501 natural sciencesMathematics - Analysis of PDEsContinuous and measurable selectionNonlinear differential operatorSettore MAT/05 - Analisi MatematicaClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysisRegular polygonFixed pointDifferential operatorDuffing system010101 applied mathematicsNonlinear systemMathematics - Classical Analysis and ODEsAnalysisConvex and nonconvex problemAnalysis of PDEs (math.AP)description
We consider a multivalued nonlinear Duffing system driven by a nonlinear nonhomogeneous differential operator. We prove existence theorems for both the convex and nonconvex problems (according to whether the multivalued perturbation is convex valued or not). Also, we show that the solutions of the nonconvex problem are dense in those of the convex (relaxation theorem). Our work extends the recent one by Kalita-Kowalski (JMAA, https://doi.org/10.1016/j.jmaa. 2018.01.067).
year | journal | country | edition | language |
---|---|---|---|---|
2018-04-30 | Journal of Mathematical Analysis and Applications |