6533b7dafe1ef96bd126f5b4
RESEARCH PRODUCT
Extracellular Vesicle microRNAs Contribute to the Osteogenic Inhibition of Mesenchymal Stem Cells in Multiple Myeloma
Riccardo AlessandroGianluca GiavaresiStefania RaimondoMelania CarlisiGiosuè Lo BoscoAngela De LucaSofia ParisiAlice ConigliaroOrnella UrzìLavinia RaimondiSergio Siragusasubject
transcription factor sp1.Cancer ResearchBone diseaseosteogenic differentiationexosomeslcsh:RC254-282transcription factor sp1ArticleSettore MED/15 - Malattie Del SangueSettore BIO/13 - Biologia Applicatamedicinemultiple myeloma (MM)ChemistrySettore BIO/16 - Anatomia UmanaMesenchymal stem cellALPLOsteoblastMicroRNAExtracellular vesiclemedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensSettore CHIM/08 - Chimica FarmaceuticaCell biologymicroRNAsExosomemedicine.anatomical_structureOncologyCell cultureAlkaline phosphatasebone diseaseBone marrowextracellular vesicles (EVs)description
Osteolytic bone disease is the major complication associated with the progression of multiple myeloma (MM). Recently, extracellular vesicles (EVs) have emerged as mediators of MM-associated bone disease by inhibiting the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Here, we investigated a correlation between the EV-mediated osteogenic inhibition and MM vesicle content, focusing on miRNAs. By the use of a MicroRNA Card, we identified a pool of miRNAs, highly expressed in EVs, from MM cell line (MM1.S EVs), expression of which was confirmed in EVs from bone marrow (BM) plasma of patients affected by smoldering myeloma (SMM) and MM. Notably,we found that miR-129-5p, which targets different osteoblast (OBs) differentiation markers, is enriched in MM-EVs compared to SMM-EVs, thus suggesting a selective packaging correlated with pathological grade. We found that miR-129-5p can be transported to hMSCs by MM-EVs and, by the use of miRNA mimics, we investigated its role in recipient cells. Our data demonstrated that the increase of miR-129-5p levels in hMSCs under osteoblastic differentiation stimuli inhibited the expression of the transcription factor Sp1, previously described as a positive modulator of osteoblastic differentiation, and of its target the Alkaline phosphatase (ALPL), thus identifying miR-129-5p among the players of vesicle-mediated bone disease.
year | journal | country | edition | language |
---|---|---|---|---|
2020-02-01 | Cancers |