6533b7dafe1ef96bd126f644

RESEARCH PRODUCT

A differential-geometric approach to generalized linear models with grouped predictors

Ernst WitAngelo MineoLuigi Augugliaro

subject

Statistics and ProbabilityGeneralized linear modelStatistics::TheoryMathematical optimizationProper linear modelGeneral MathematicsORACLE PROPERTIESGeneralized linear modelSPARSITYGeneralized linear array model01 natural sciencesGeneralized linear mixed modelCONSISTENCY010104 statistics & probabilityScore statistic.LEAST ANGLE REGRESSIONLinear regressionESTIMATORApplied mathematicsDifferential geometry0101 mathematicsDivergence (statistics)MathematicsVariance functionDifferential-geometric least angle regressionPATH ALGORITHMApplied MathematicsLeast-angle regressionScore statistic010102 general mathematicsAgricultural and Biological Sciences (miscellaneous)Group lassoGROUP SELECTIONStatistics Probability and UncertaintyGeneral Agricultural and Biological SciencesSettore SECS-S/01 - Statistica

description

We propose an extension of the differential-geometric least angle regression method to perform sparse group inference in a generalized linear model. An efficient algorithm is proposed to compute the solution curve. The proposed group differential-geometric least angle regression method has important properties that distinguish it from the group lasso. First, its solution curve is based on the invariance properties of a generalized linear model. Second, it adds groups of variables based on a group equiangularity condition, which is shown to be related to score statistics. An adaptive version, which includes weights based on the Kullback-Leibler divergence, improves its variable selection features and is shown to have oracle properties when the number of predictors is fixed.

10.1093/biomet/asw023http://hdl.handle.net/10447/193784