6533b7dafe1ef96bd126f67f

RESEARCH PRODUCT

A saturated strategy robustly ensures stability of the cooperative equilibrium for Prisoner's dilemma

Franco BlanchiniDario BausoGiulia Giordano

subject

Computer Science::Computer Science and Game Theory0209 industrial biotechnologyControl and OptimizationSymmetric gameNormal-form gameStochastic gameSymmetric equilibrium02 engineering and technologyPrisoner's dilemma01 natural sciences010104 statistics & probability020901 industrial engineering & automationStrategySettore ING-INF/04 - AutomaticaArtificial IntelligenceRepeated gameDecision Sciences (miscellaneous)Simultaneous gameSettore MAT/09 - Ricerca Operativa0101 mathematicsMathematical economicsGames Sociology Statistics Trajectory Asymptotic stability Jacobian matricesArtificial Intelligence; Decision Sciences (miscellaneous); Control and OptimizationMathematics

description

We study diffusion of cooperation in a two-population game in continuous time. At each instant, the game involves two random individuals, one from each population. The game has the structure of a Prisoner's dilemma where each player can choose either to cooperate (c) or to defect (d), and is reframed within the field of approachability in two-player repeated game with vector payoffs. We turn the game into a dynamical system, which is positive, and propose a saturated strategy that ensures local asymptotic stability of the equilibrium (c, c) for any possible choice of the payoff matrix. We show that there exists a rectangle, in the space of payoffs, which is positively invariant for the system. We also prove that there exists a region in the space of payoffs for which the equilibrium solution (d, d) is an attractor, while all of the trajectories originating outside that region, but still in the positive quadrant, are ultimately bounded in the rectangle and, under suitable assumptions, converge to the solution (c, c).

https://doi.org/10.1109/cdc.2016.7798941