6533b7dafe1ef96bd126f6d6

RESEARCH PRODUCT

Increasing temperatures accentuate negative fitness consequences of a marine parasite

Anna KuparinenMark D. FastKate E. MedcalfSean C. GodwinJeffrey A. HutchingsJeffrey A. Hutchings

subject

0106 biological sciencesRange (biology)Salmo salarFisheriesWildlifeClimate changelcsh:MedicinekalatäitBiologymedicine.disease_cause010603 evolutionary biology01 natural sciencesArticleCopepodaFish DiseasesloisetInfestationparasitic diseasesmedicineAnimals14. Life underwaterSalmolcsh:ScienceWildlife conservationEcological epidemiologyMultidisciplinaryEcologyEcology010604 marine biology & hydrobiologyClimate-change ecologylcsh:RTemperatureilmastonmuutoksetbiology.organism_classificationkalatauditProductivity (ecology)13. Climate actionLepeophtheirusecological epidemiologylämpötilalcsh:Qecologyclimate-change ecology

description

AbstractInfectious diseases are key drivers of wildlife populations and agriculture production, but whether and how climate change will influence disease impacts remains controversial. One of the critical knowledge gaps that prevents resolution of this controversy is a lack of high-quality experimental data, especially in marine systems of significant ecological and economic consequence. Here, we performed a manipulative experiment in which we tested the temperature-dependent effects on Atlantic salmon (Salmo salar) of sea lice (Lepeophtheirus salmonis)—a parasite that can depress the productivity of wild-salmon populations and the profits of the salmon-farming industry. We explored sea-louse impacts on their hosts across a range of temperatures (10, 13, 16, 19, and 22 °C) and infestation levels (zero, ‘low’ (mean abundance ± SE = 1.6 ± 0.1 lice per fish), and ‘high’ infestation (6.8 ± 0.4 lice per fish)). We found that the effects of sea lice on the growth rate, condition, and survival of juvenile Atlantic salmon all worsen with increasing temperature. Our results provide a rare empirical example of how climate change may influence the impacts of marine disease in a key social-ecological system. These findings underscore the importance of considering climate-driven changes to disease impacts in wildlife conservation and agriculture.

10.1038/s41598-020-74948-3http://link.springer.com/article/10.1038/s41598-020-74948-3