6533b7dbfe1ef96bd126f73f

RESEARCH PRODUCT

Perivascular Cells in Diffuse Cutaneous Systemic Sclerosis Overexpress Activated ADAM12 and Are Involved in Myofibroblast Transdifferentiation and Development of Fibrosis.

Francesco CicciaGiovanni TrioloGiuliana GugginoEdoardo AlessePiero RuscittiVasiliki LiakouliFrancesco CarubbiFrancesca ZazzeroniRoberto GiacomelliOnorina BerardicurtiPaola CiprianiPaola Di Benedetto

subject

0301 basic medicineAdultMalePathologymedicine.medical_specialtyImmunologyADAM12 Protein03 medical and health sciencesYoung AdultRheumatologyFibrosisTransforming Growth Factor betamedicineImmunology and AllergyHumansProgenitor cellMyofibroblastsSkinintegumentary systembusiness.industryMedicine (all)FIBROSIS; PERICYTE; SYSTEMIC SCLEROSIS; Rheumatology; Immunology; Immunology and AllergyMesenchymal stem cellTransdifferentiationMesenchymal Stem CellsMiddle Agedmedicine.diseaseFibrosisActinsUp-RegulationSettore MED/16 - Reumatologia030104 developmental biologymedicine.anatomical_structurePERICYTEFIBROSIS; PERICYTE; SYSTEMIC SCLEROSIS; Immunology and Allergy; Rheumatology; Immunology; Medicine (all)SYSTEMIC SCLEROSISCell TransdifferentiationScleroderma DiffuseFemalePericyteBone marrowbusinessPericytesMyofibroblastTransforming growth factor

description

Objective.Microvascular damage is pivotal in the pathogenesis of systemic sclerosis (SSc), preceding fibrosis, and whose trigger is not still fully understood. Perivascular progenitor cells, with profibrotic activity and function, are identified by the expression of the isoform 12 of ADAM (ADAM12) and this molecule may be upregulated by transforming growth factor-β (TGF-β). The goal of this work was to evaluate whether pericytes in the skin of patients with diffuse cutaneous SSc (dcSSc) expressed ADAM12, suggesting their potential contribution to the fibrotic process, and whether TGF-β might modulate this molecule.Methods.After ethical approval, mesenchymal stem cells (MSC) and fibroblasts (FB) were isolated from bone marrow and skin samples collected from 20 patients with dcSSc. ADAM12 expression was investigated in the skin and in isolated MSC and FB treated with TGF-β by immunofluorescence, quantitative real-time PCR, and western blot. Further, we silenced ADAM12 expression in both dcSSc-MSC and -FB to confirm the TGF-β modulation.Results.Pericytes and FB of dcSSc skin showed an increased expression of ADAM12 when compared with healthy control skin. TGF-β in vitro treatment induced a significant increase of ADAM12 in both SSc-MSC and -FB, with the higher levels observed in dcSSc cells. After ADAM12 silencing, the TGF-β ability to upregulate α-smooth muscle actin in both SSc-MSC and SSc-FB was inhibited.Conclusion.Our results suggest that in SSc, pericytes that transdifferentiate toward activated FB are present in the vascular tree, and TGF-β, while increasing ADAM12 expression, may modulate this transdifferentiation.

10.3899/jrheum.150996https://pubmed.ncbi.nlm.nih.gov/27252423