6533b7dbfe1ef96bd126f7d2

RESEARCH PRODUCT

Mono- and Binuclear Copper(II) and Nickel(II) Complexes with the 3,6-Bis(picolylamino)-1,2,4,5-Tetrazine Ligand

Narcis AvarvariAbdelkrim El-ghayouryFrancesc LloretMiguel JulveOleh Stetsiuk

subject

DenticityMaterials science42Pharmaceutical Sciencechemistry.chemical_element5-tetrazinecrystal structure determination010402 general chemistry01 natural sciencesO.ArticleAnalytical ChemistryM.lcsh:QD241-441Julvechemistry.chemical_compoundTetrazinenickelStetsiukN 1lcsh:Organic chemistryA.Drug DiscoveryLloret[CHIM]Chemical SciencesPhysical and Theoretical ChemistryIsostructural1245-tetrazine010405 organic chemistryLigandHexafluoroacetylacetoneOrganic ChemistryMagnetic susceptibility0104 chemical sciencesNickelCrystallographyAvarvarichemistryChemistry (miscellaneous)F.Intramolecular forcecopperMolecular Medicinemagnetic propertiesnitrogen ligandsEl-Ghayoury

description

Four new compounds of formulas [Cu(hfac)2(L)] (1), [Ni(hfac)2(L)] (2), [{Cu(hfac)2}2(µ-L)]·2CH3OH (3) and [{Ni(hfac)2}2(µ-L)]·2CH3CN (4) [Hhfac = hexafluoroacetylacetone and L = 3,6-bis(picolylamino)-1,2,4,5-tetrazine] have been prepared and their structures determined by X-ray diffraction on single crystals. Compounds 1 and 2 are isostructural mononuclear complexes where the metal ions [copper(II) (1) and nickel(II) (2)] are six-coordinated in distorted octahedral MN2O4 surroundings which are built by two bidentate hfac ligands plus another bidentate L molecule. This last ligand coordinates to the metal ions through the nitrogen atoms of the picolylamine fragment. Compounds 3 and 4 are centrosymmetric homodinuclear compounds where two bidentate hfac units are the bidentate capping ligands at each metal center and a bis-bidentate L molecule acts as a bridge. The values of the intramolecular metal···metal separation are 7.97 (3) and 7.82 Å (4). Static (dc) magnetic susceptibility measurements were carried out for polycrystalline samples 1–4 in the temperature range 1.9–300 K. Curie law behaviors were observed for 1 and 2, the downturn of χMT in the low temperature region for 2 being due to the zero-field splitting of the nickel(II) ion. Very weak [J = −0.247(2) cm−1] and relatively weak intramolecular antiferromagnetic interactions [J = −4.86(2) cm−1] occurred in 3 and 4, respectively (the spin Hamiltonian being defined as H = −JS1·S2). Simple symmetry considerations about the overlap between the magnetic orbitals across the extended bis-bidentate L bridge in 3 and 4 account for their magnetic properties.

10.3390/molecules26082122https://hal.univ-angers.fr/hal-03452232/document