6533b7dbfe1ef96bd126fe5d
RESEARCH PRODUCT
Error Bounds for the Numerical Evaluation of Integrals with Weights
Claus Schneidersubject
Combinatoricssymbols.namesakeSmoothness (probability theory)Degree (graph theory)Simple (abstract algebra)StatisticssymbolsGaussian quadratureAlmost everywhereFunction (mathematics)Mathematicsdescription
This paper is concerned with a procedure of obtaining error bounds for numerically evaluated integrals with weights. If \( - \infty \mathop < \limits_ = a < b\mathop < \limits_ = \infty \), w integrable over [a,b] and positive almost everywhere, then an approximation of \({I_W}f: = \int\limits_a^b {w\left( t \right)f\left( t \right)dt} \) by a quadrature rule \({Q_n}f: = \sum\limits_{i = 0}^n {{\alpha _i}f\left( {{t_i}} \right)} \) is leading to the error Enf ≔ Iwf ‒ Qnf. An algorithm is derived for the computation of bounds for |Enf| depending on the smoothness of the integrand f and on the degree of exactness of Q. As initial values this algorithm needs moments of the weighting function w and bounds for derivatives of f. Then bounds for the error constants are computed by simple recursions.
year | journal | country | edition | language |
---|---|---|---|---|
1988-01-01 |