6533b7dbfe1ef96bd126ffc5

RESEARCH PRODUCT

Responses of citrus plants to ozone: leaf biochemistry, antioxidant mechanisms and lipid peroxidation.

Angeles CalatayudManuel TalonE. BarrenoEduardo Primo-milloDomingo J. Iglesias

subject

ChlorophyllCitrusAntioxidantOzoneEthylenePhysiologymedicine.medical_treatmentAmino Acids CyclicPlant ScienceAscorbic Acidmedicine.disease_causeAntioxidantsLipid peroxidationchemistry.chemical_compoundOzoneGeneticsmedicineCarotenoidchemistry.chemical_classificationAir Pollutantsbiologyfood and beveragesEthylenesbiology.organism_classificationCarotenoidsPlant LeavesRutaceaechemistryBiochemistryChlorophyllCarbohydrate MetabolismLipid PeroxidationOxidative stress

description

The effects of ozone upon 3-year-old trees of Clementina mandarin (Citrus clementina Hort. ex Tan.) cv. Marisol exposed for 12 months to ambient (10 nl l(-1)) and high (30 and 65 nl l(-1)) concentrations in open top chambers (OTCs) were investigated. The data showed that in leaves, ozone reduced total chlorophylls, carotenoid and carbohydrate concentration. and increased 1-aminocyclopropane-1-carboxylic acid (ACC) content and ethylene production. In treated plants, the ascorbate leaf pool was decreased, while lipid peroxidation and Solute leakaGe were significantly higher than in ozone-free controls. The data indicated that ozone triggered protective mechanisms against oxidative stress in citrus. (c) 2006 Elsevier SAS. All rights reserved.

10.1016/j.plaphy.2006.03.007https://pubmed.ncbi.nlm.nih.gov/16644230