6533b7dbfe1ef96bd127024f

RESEARCH PRODUCT

Physico-chemical and mechanical characterization of in-situ forming xyloglucan gels incorporating a growth factor to promote cartilage reconstruction

Giulio GhersiSimona TodaroMaria Antonietta SabatinoClelia DispenzaCaterina Lo PrestiPier Luigi San BiagioDonatella Bulone

subject

In situInjectionFibroblast Growth FactorChemical Phenomenamedicine.medical_treatment02 engineering and technologyFibroblast growth factor01 natural sciencesViscositychemistry.chemical_compoundTissue ScaffoldSettore BIO/10 - BiochimicaComposite materialGlucansGelTissue ScaffoldsIn-situ forming gelsViscosityGrowth factor021001 nanoscience & nanotechnologyGlucanXyloglucanmedicine.anatomical_structureSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMechanics of MaterialsXylansMaterials Science (all)0210 nano-technologyMaterials scienceMechanical PhenomenaInjectable scaffoldsBioengineeringCondensed Matter Physic010402 general chemistryInjectable scaffoldInjectionsBiomaterialsShear modulusXylanChondrocytesmedicineAnimalsMechanics of MaterialXyloglucanCartilage reconstructionCell ProliferationMechanical PhenomenaAnimalCartilageGrowth factorMechanical EngineeringIn-situ forming gelChondrocyte0104 chemical sciencesFibroblast Growth FactorsMolecular WeightCartilagechemistryBiophysicsCattleSettore CHIM/07 - Fondamenti Chimici Delle TecnologieTemperature-responsiveGels

description

Abstract The development of growth factors is very promising in the field of tissue regeneration but specifically designed formulations have to be developed in order to enable such new biological entities (NBEs). In particular, the range of therapeutic concentrations is usually very low compared to other active proteins and the confinement in the target site can be of crucial importance. In-situ forming scaffolds are very promising solutions for minimally invasive intervention in cartilage reconstruction and targeting of NBEs. In this work injectable, in-situ forming gels of a temperature responsive partially degalactosylated xyloglucan (Deg-XG) incorporating the growth factor FGF-18 are formulated and characterized. In particular, injectability and shear viscosity at room temperature, time-to-gel at body temperature, morphology and mechanical properties of gels are investigated. The highly hydrophobic growth factor is favorably incorporated and retained by the gel. Gels undergo a slow erosion process when immersed in PBS at 37 °C that opens up their porous structure. The prolonged hydrothermal treatment leads to structural rearrangements towards tougher networks with increased dynamic shear modulus. Preliminary biological evaluations confirm absence of cytotoxicity and the ability of these scaffolds to host cells and promote their proliferation.

10.1016/j.msec.2016.09.045https://dx.doi.org/10.1016/j.msec.2016.09.045