6533b7dbfe1ef96bd1270256

RESEARCH PRODUCT

Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen

Michael MaixnerXavier FoissacXavier FoissacPatrik KehrliJes Johannesen

subject

0106 biological sciencesRange (biology)Population DynamicsPopulation geneticslcsh:Medicine01 natural sciencessanté des plantesphytoplasme du stolburPhyletic PatternsVitisUrtica dioicahyalesthes obsoletuslcsh:SciencePathogenpathologie végétalePhylogenybactérie0303 health sciencesMultidisciplinaryEcologyEcologystolburUrtica dioicaAgricultureBiodiversityHost-Pathogen InteractionPhytoplasmaépidémiologieinsecte vecteuragent pathogèneResearch ArticleDNA BacterialGenetic MarkersPhytoplasmaEvolutionary ProcessesPhytopathology and phytopharmacyEmergenceBiologyDNA MitochondrialMicrobiologyVector Biology03 medical and health sciencesmollicute phytopathogèneIntegrated ControlintéractionEvolutionary SystematicsParasite EvolutionBiologyHybridizationMicrobial Pathogens030304 developmental biologyPlant DiseasesEvolutionary BiologyPopulation BiologyHost (biology)lcsh:Rtransmission de la maladiebiology.organism_classificationPhytopathologie et phytopharmacievariation génétiqueOrganismal Evolution[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyEmerging Infectious DiseasesVector (epidemiology)Microbial EvolutionBiological dispersallcsh:QParasitologyPest ControlPopulation EcologyZoologyEntomologyPopulation Genetics010606 plant biology & botanyCoevolution

description

International audience; Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.

10.1371/journal.pone.0051809http://hdl.handle.net/20.500.12278/111256