6533b7dbfe1ef96bd1270269
RESEARCH PRODUCT
Asymptotic regime in N random interacting species
Davide ValentiBernardo SpagnoloAlessandro Fiasconarosubject
Fluctuation phenomena random processes noise and Brownian motionPhysicsPhysics - Physics and SocietyFluctuation phenomena random processes noise and Brownian motion; Nonlinear dynamics and nonlinear dynamical systems; Population dynamics and ecological pattern formation; Complex Systemseducation.field_of_studySettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciExtinctionField (physics)PopulationFOS: Physical sciencesComplex SystemsPhysics and Society (physics.soc-ph)External noiseCondensed Matter PhysicsComplex ecosystemMultiplicative noiseElectronic Optical and Magnetic MaterialsProbability distributionQuantitative Biology::Populations and EvolutionStatistical physicsNonlinear dynamics and nonlinear dynamical systemeducationLocal fieldComputer Science::Distributed Parallel and Cluster ComputingPopulation dynamics and ecological pattern formationdescription
The asymptotic regime of a complex ecosystem with \emph{N}random interacting species and in the presence of an external multiplicative noise is analyzed. We find the role of the external noise on the long time probability distribution of the i-th density species, the extinction of species and the local field acting on the i-th population. We analyze in detail the transient dynamics of this field and the cavity field, which is the field acting on the $i^{th}$ species when this is absent. We find that the presence or the absence of some population give different asymptotic distributions of these fields.
year | journal | country | edition | language |
---|---|---|---|---|
2005-10-07 |