6533b7dbfe1ef96bd1270898

RESEARCH PRODUCT

ADAMTS13 In 4 Different VWF/VIII Concentrates and Its Impact on Therapy.

Tanja FalterInge ScharrerThomas VighMirjeta QorrajSarah Steinemann

subject

Gel electrophoresisbiologyChemistryImmunologyCell BiologyHematologymedicine.diseaseBiochemistryMolecular biologyADAMTS13SepharoseAntigenVon Willebrand factorhemic and lymphatic diseasesVon Willebrand diseasemedicinebiology.proteinAntibodyPolyacrylamide gel electrophoresis

description

Abstract Abstract 3677 Introduction: The hemostatic activity of von Willebrand Factor (VWF) is mainly controlled by the plasma metalloprotease ADAMTS13, which cleaves ultralarge VWF multimers. A qualitative or quantitative deficiency of VWF induces the most common hemorrhagic diathesis, the von Willebrand Disease (VWD). The current classification graduates the VWD in three major types. Depending on severity and the type of VWD the treatment with VWF/FVIII concentrates may by necessary. The commercially available VWF/FVIII concentrates differ in their multimer structure and furthermore also in their pharmacokinetics. We investigated commercial VWF concentrates with respect to their ADAMTS 13 activity and antigen levels with the newest available methods. Moreover, to detect a possible correlation, we analysed the VWF multimer structure of the concentrates. Methods: We analysed 4 human derived VWF/VIII-concentrates (over all 7charges) after reconstitution according to the manufacturer's instructions in different dilutions. Following methods were used: BCS Method according to Böhm detects the capacity of the concentrates for autoproteolysis. The VWF solutions were diluted with 5mol/l urea and then incubated for 14–16h at 37°C in low ionic TRIS buffer containing BaCl2 and different plasma samples: pool plasma; plasma from patients with TTP with neutralizing ADAMTS13 auto-antibodies; plasma from patients with TTP without auto-antibodies. The residual VWF:Ristocetin Cofactor (VWF:RCo) activity was subsequently measured using the BC von Willebrand Reagent from Dade Behring. ELISA Technozym®ADAMTS13 and Actifluor TM ADAMTS13 are based on the kinetic measurements of the activity with fluorescence resonance energy transfer (FRET). ADAMTS13 antigen was measured by use of the Technozym ELISA kit. SDS-Gel electrophoresis in 1% Agarose Gel was used to investigate the structure of VWF multimers. Results: The BCS Method according to Böhm is an indirect measurement for endogenous ADAMTS13 activity in the investigated concentrate. Important is the loss of the residual VWF:RCo in the concentrates in presence of TTP-plasma without antibodies and pool plasma compared to the residual VWF:RCo in presence of TTP-plasma with antibodies. All concentrates show some ADAMTS13 activity, however product 1 contains more ADAMTS13 than the other concentrates. The results of the two FRETS-assays correspond very well to the BCS-method results; in addition the assays detect directly the ADAMTS13 activity also in very low measurement range. In a dilution of 16U VWF per ml concentrate the ADAMTS13 activity in product 1 with 4.3% was the highest compared to product 2: 3.2%, product 3: 2.6% and product 4: 2%. The great variability of the test results in higher concentrations may be caused by interferences between some constituents of the concentrates and the analysis. In the same sample set and dilution the ADAMTS13 antigen values correlate very well with ADAMTS13 activity values. The SDS gel electrophoresis reveals the different VWF structure of product1; it has less large and ultralarge multimers. There could be a correlation to the relatively higher ADAMTS13 activity and antigen level. Conclusion: All the investigated VWF/VIII concentrates contain some ADAMTS13 activity and antigen. This was found especially by FRETs assay due to the high sensitivity. Because of the correlation between ADAMTS13 activity and modified VWF multimer structure we like to conclude that ADAMTS13 has influence on stability and therefore also on quality of the concentrates. This might have a therapeutic consequence especially for VWD type 2A. Type 2A is characterized by a relative reduction of intermediate and large VWF multimer. The multimeric abnormalities are commonly the result of in vivo proteolytic degradation of the von Willebrand factor caused by ADAMTS13. Disclosures: No relevant conflicts of interest to declare.

https://doi.org/10.1182/blood.v116.21.3677.3677