6533b7dbfe1ef96bd1270a77

RESEARCH PRODUCT

Function and Evolution of Nematode RNAi Pathways

Miguel Vasconcelos AlmeidaMiguel A. Andrade-navarroRené F. Ketting

subject

0301 basic medicineSmall RNASmall interfering RNAPiwilcsh:QH426-470nematodePiwi-interacting RNAReviewComputational biologypiRNABiochemistry03 medical and health sciences0302 clinical medicineRNA interference21U RNAGenetics22G RNAGene silencing26G RNAsmall RNAMolecular BiologyCaenorhabditis elegansRdRPbiologyRNAArgonautebiology.organism_classificationArgonautelcsh:Genetics030104 developmental biologysiRNAC. elegans030217 neurology & neurosurgery

description

Selfish genetic elements, like transposable elements or viruses, are a threat to genomic stability. A variety of processes, including small RNA-based RNA interference (RNAi)-like pathways, has evolved to counteract these elements. Amongst these, endogenous small interfering RNA and Piwi-interacting RNA (piRNA) pathways were implicated in silencing selfish genetic elements in a variety of organisms. Nematodes have several incredibly specialized, rapidly evolving endogenous RNAi-like pathways serving such purposes. Here, we review recent research regarding the RNAi-like pathways of Caenorhabditis elegans as well as those of other nematodes, to provide an evolutionary perspective. We argue that multiple nematode RNAi-like pathways share piRNA-like properties and together form a broad nematode toolkit that allows for silencing of foreign genetic elements.

10.3390/ncrna5010008http://www.mdpi.com/2311-553X/5/1/8