6533b7dbfe1ef96bd1270a95

RESEARCH PRODUCT

Generic Method for Modular Surface Modification of Cellulosic Materials in Aqueous Medium by Sequential Click-Reaction and Adsorption

Janne LaineHenna RosiloErkki KolehmainenIlari FilpponenEero KontturiS. NummelinOlli Ikkala

subject

AzidesMagnetic Resonance SpectroscopyPolymers and PlasticsSurface Propertiesta221BioengineeringMicroscopy Atomic ForceCatalysisNanocellulosePolyethylene GlycolsmaterialsBiomaterialschemistry.chemical_compoundAdsorptionSpectroscopy Fourier Transform Infraredotorhinolaryngologic diseasesMaterials ChemistrymedicineOrganic chemistryAnimalsCotton FiberCelluloseta216ta116ta215ta218nanocelluloseFluorescent Dyesta214ta114Photoelectron Spectroscopyclick-reactionsSubstrate (chemistry)WaterSerum Albumin BovineCombinatorial chemistrycelluloseCarboxymethyl cellulosefunctionalchemistryadsorptionAlkynesCarboxymethylcellulose SodiumSurface functionalizationClick chemistrySurface modificationCattleAzidemedicine.drug

description

A generic approach for heterogeneous surface modification of cellulosic materials in aqueous medium, applicable for a wide range of functionalizations, is presented. In the first step, carboxymethyl cellulose (CMC) modified with azide or alkyne functionality, was adsorbed on a cellulosic substrate, thus, providing reactive sites for azide–alkyne cycloaddition click reactions. In the second step, functional units with complementary click units were reacted on the cellulose surface, coated by the click-modified CMC. Selected model functionalizations on diverse cellulosic substrates are shown to demonstrate the generality of the approach. The concept by sequentially combining the robust physical adsorption (“physical click”) and robust chemical reaction (“chemical click”) allows versatile, simple, and environmentally friendly modification of a cellulosic substrate with virtually any azide- or alkyne-modified molecule and even functionalization with several types of units.

10.1021/bm201661khttp://juuli.fi/Record/0336738912