6533b7dbfe1ef96bd1270ae1

RESEARCH PRODUCT

Evagination of Cells Controls Bio-Silica Formation and Maturation during Spicule Formation in Sponges

Klaus Peter JochumMatthias WiensXiaohong WangDario PisignanoHeinz C. SchröderUte SchloßmacherWerner E.g. Müller

subject

SpiculeHistologyMaterials ScienceAquaporinlcsh:MedicineMarine BiologyCytoplasmic GranulesModels BiologicalInorganic ChemistryNatural Materials03 medical and health sciencesSponge spiculeMicroscopy Electron TransmissionAnimal PhysiologyNanotechnologyAnimalslcsh:ScienceBiologyBioinorganic Chemistry030304 developmental biologyNanomaterials0303 health sciencesMultidisciplinarybiologyChemistryVesicleSilicates030302 biochemistry & molecular biologylcsh:RCytoplasmic VesiclesSpectrometry X-Ray EmissionAnatomyMarine TechnologyBiogeochemistrybiology.organism_classificationSilicon DioxideCathepsinsImmunohistochemistrySuberites domunculaChemistryMembraneGeochemistryEvaginationBiophysicslcsh:QSuberitesZoologySuberitesResearch Article

description

The enzymatic-silicatein mediated formation of the skeletal elements, the spicules of siliceous sponges starts intracellularly and is completed extracellularly. With Suberites domuncula we show that the axial growth of the spicules proceeds in three phases: (I) formation of an axial canal; (II) evagination of a cell process into the axial canal, and (III) assembly of the axial filament composed of silicatein. During these phases the core part of the spicule is synthesized. Silicatein and its substrate silicate are stored in silicasomes, found both inside and outside of the cellular extension within the axial canal, as well as all around the spicule. The membranes of the silicasomes are interspersed by pores of ≈ 2 nm that are likely associated with aquaporin channels which are implicated in the hardening of the initial bio-silica products formed by silicatein. We can summarize the sequence of events that govern spicule formation as follows: differential GENETIC READOUT (of silicatein) → FRACTAL ASSOCIATION of the silicateins → EVAGINATION of cells by hydro-mechanical forces into the axial canal → and finally PROCESSIVE BIO-SILICA POLYCONDENSATION around the axial canal. We termed this process, occurring sequentially or in parallel, BIO-INORGANIC SELF-ORGANIZATION.

10.1371/journal.pone.0020523http://dx.doi.org/10.1371/journal.pone.0020523