6533b7dbfe1ef96bd1270c9a

RESEARCH PRODUCT

Octave-spanning coherent supercontinuum generation in a step-index tellurite fiber and towards few-cycle pulse compression at 2 μ m

D. GaponovFrédéric DésévédavyL. LavouteBertrand KiblerFrédéric SmektalaJean-thomas GomesA. Lemière

subject

Materials scienceTerahertz radiationPhysics::OpticsSoliton (optics)02 engineering and technology01 natural scienceslaw.invention010309 opticsOpticslaw0103 physical sciencesDispersion (optics)FiberElectrical and Electronic EngineeringPhysical and Theoretical ChemistryComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPulse duration021001 nanoscience & nanotechnologyLaserAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSupercontinuumPulse compression0210 nano-technologybusiness

description

Abstract We experimentally demonstrate 140-THz bandwidth (at −20 dB) supercontinuum generation in a 10 cm-long all-normal dispersion step-index tellurite fiber pumped by a turn-key femtosecond fiber laser emitting at 2 . 11 μ m at a repetition rate of 19 MHz. The soliton self-frequency shifted thulium-doped fiber mode-locked laser emits initial transform-limited pulses, with 85-fs pulse duration, that are subsequently quasi-linearly chirped (over more than 50 THz) during the above nJ-level nonlinear propagation. Moreover, we numerically demonstrate the possible pulse compression down to 12 fs by means of additional linear propagation in a standard step-index fluoride fiber with anomalous dispersion.

10.1016/j.optcom.2021.126853https://hal.archives-ouvertes.fr/hal-03436989/document