6533b7dbfe1ef96bd1270ccb
RESEARCH PRODUCT
Local softening of information geometric indicators of chaos in statistical modeling in the presence of quantum-like considerations
Adom GiffinS. A. AliCarlo Cafarosubject
Quantum PhysicsEntropy (statistical thermodynamics)GaussianGeneral Physics and AstronomyFOS: Physical sciencesStatistical modelQuantum entanglementNonlinear Sciences - Chaotic DynamicsUncorrelatedsymbols.namesakeprobability theory; Riemannian geometry; chaos; complexity; entropysymbolsInformation geometryStatistical physicsChaotic Dynamics (nlin.CD)Quantum Physics (quant-ph)QuantumSofteningMathematicsdescription
In a previous paper (C. Cafaro et al., 2012), we compared an uncorrelated 3D Gaussian statistical model to an uncorrelated 2D Gaussian statistical model obtained from the former model by introducing a constraint that resembles the quantum mechanical canonical minimum uncertainty relation. Analysis was completed by way of the information geometry and the entropic dynamics of each system. This analysis revealed that the chaoticity of the 2D Gaussian statistical model, quantified by means of the Information Geometric Entropy (IGE), is softened or weakened with respect to the chaoticity of the 3D Gaussian statistical model due to the accessibility of more information. In this companion work, we further constrain the system in the context of a correlation constraint among the system's micro-variables and show that the chaoticity is further weakened, but only locally. Finally, the physicality of the constraints is briefly discussed, particularly in the context of quantum entanglement.
year | journal | country | edition | language |
---|---|---|---|---|
2013-10-28 |