6533b7dbfe1ef96bd1271408

RESEARCH PRODUCT

Bayesian Mapping of Lichens Growing on Trees

Antti PenttinenAnne RiialiMikko Kuusinen

subject

Statistics and ProbabilityMarkov chainbiologyBayesian probabilityDiameter at breast heightMarkov chain Monte CarloGeneral Medicinebiology.organism_classificationsymbols.namesakeStatisticsCovariatesymbolsStatistics Probability and UncertaintySpatial dependenceSpatial analysisMathematicsLobaria pulmonaria

description

Suitability of trees as hosts for epiphytic lichens are studied in a forest stand of size 25 ha. Suitability is measured as occupation probabilites which are modelled using hierarchical Bayesian approach. These probabilities are useful for an ecologist. They give smoothed spatial distribution map of suitability for each of the species and can be used in detecting high- and low-probability areas. In addition, suitability is explained by tree-level covariates. Spatial dependence, which is due to unobserved spatially structured covariates, is modelled through an unobserved Markov random field. Markov chain Monte Carlo method has been applied in Bayesian computation. The extensive spatial data consist of the occurrences of eight lichen species and one bryophyte on all of the 1253 potential host trees. In addition, coordinates of the trees and several tree characteristics have been recorded. The data have been analysed for four most abundant species: Lobaria pulmonaria, Nephroma bellum, Nephroma parile and Peltigera praetextata. The tree level parameters, subject to estimation, consist of the occurrence probabilities for each tree and for each lichen species. Model validation is discussed in detail and, in addition to Bayesian validation tools, the autologistic model and case-control design based on logistic regression have been suggested for validation of covariate effects. As a result we present suitability maps for the four lichen species. We observed, that among the observed tree covariates, the diameter at breast height (DBH) correlates with lichen occurrence. ()ur modelling approach has close connections to disease mapping in spatial epidemiology.

https://doi.org/10.1002/1521-4036(200110)43:6<717::aid-bimj717>3.0.co;2-3