6533b7dbfe1ef96bd1271442
RESEARCH PRODUCT
A β-1,3 Glucan Sulfate Induces Resistance in Grapevine against Plasmopara viticola Through Priming of Defense Responses, Including HR-like Cell Death
C. ArnouldXavier DaireJean-marie JoubertLaurence MercierFabienne BaillieulVivienne Gianinazzi-pearsonMathilde AllègreAlain PuginSophie TrouvelotO. KlarzynskiA.-l. Varniersubject
OLIGOSACCHARIDESpores0106 biological sciencesPhysiologyDEFENSE REACTIONSCyclopentanesGenes Plant01 natural sciencesMicrobiology03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantBotanyTobacco mosaic virusPlant defense against herbivory[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyVitisOxylipinsGlucansPlant Diseases030304 developmental biology0303 health sciencesCell DeathbiologyPOTENTIALISATIONINDUCED RESISTANCEJasmonic acidCallosefood and beveragesTobamovirusHydrogen PeroxideGeneral Medicinebiology.organism_classificationImmunity InnateUp-RegulationElicitorPlant LeavesOomyceteschemistryPlasmopara viticolaPlant StomataDowny mildewAgronomy and Crop Science010606 plant biology & botanydescription
Sulfated laminarin (PS3) has been shown previously to be an elicitor of plant defense reactions in tobacco and Arabidopsis and to induce protection against tobacco mosaic virus. Here, we have demonstrated the efficiency of PS3 in protecting a susceptible grapevine cultivar (Vitis vinifera cv. Marselan) against downy mildew (Plasmopara viticola) under glasshouse conditions. This induced resistance was associated with potentiated H2O2 production at the infection sites, upregulation of defense-related genes, callose and phenol depositions, and hypersensitive response-like cell death. Interestingly, similar responses were observed following P. viticola inoculation in a tolerant grapevine hybrid cultivar (Solaris). A pharmacological approach led us to conclude that both callose synthesis and jasmonic acid pathway contribute to PS3-induced resistance.
year | journal | country | edition | language |
---|---|---|---|---|
2008-01-01 | Molecular Plant-Microbe Interactions® |