6533b7dbfe1ef96bd1271487
RESEARCH PRODUCT
Possible Implications for Improved Osteogenesis? The Combination of Platelet-Rich Fibrin With Different Bone Substitute Materials
Sebastian BlattSebastian BlattDaniel G. E. ThiemSolomiya KyyakAndreas PabstBilal Al-nawasPeer W. Kämmerersubject
allograftHistologylcsh:BiotechnologyBiomedical Engineeringplatelet-rich fibrinBioengineering02 engineering and technologyBone morphogenetic proteinBone morphogenetic protein 2Andrology03 medical and health sciences0302 clinical medicineTissue engineeringlcsh:TP248.13-248.65medicineViability assayxenograftoral regenerationOriginal ResearchChemistryBioengineering and BiotechnologyOsteoblast030206 dentistrybone substitute021001 nanoscience & nanotechnologyPlatelet-rich fibrinRUNX2medicine.anatomical_structuretissue engineeringosteoblastAlkaline phosphatase0210 nano-technologyBiotechnologydescription
Bone substitute materials (BSM) are widely used in oral regeneration, but sufficient angiogenesis is crucial for osteogenesis. The combination of BSM with autologous thrombocyte concentrations such as platelet-rich fibrin (PRF) may represent a clinical approach to overcome this limitation. This study analyzes the early influence on osteoblast (HOB) in vitro. Here, four different BSM (allogeneic, alloplastic, and two of xenogeneic origin) were combined with PRF. After the incubation with osteoblasts for 24 h, cell viability, migration, and proliferation were assessed. Next, marker of proliferation, migration, and differentiation were evaluated on gene and protein levels in comparison to the native BSM and osteoblast alone. Addition of PRF increased viability for both the xenogeneic BSM (p = 0.0008, p = 0.032, respectively) in comparison to HOB and vs. native BSM (p = 0.008), and led to a tendency for increased cell proliferation and migration for all BSM (each p > 0.05). On gene basis, allogeneic and alloplastic BSM displayed a significantly increased RUNX2 expression (each p = 0.050). Expression of alkaline phosphatase for alloplastic (p = 0.050) and collagen-1 for xenogeneic BSM (p = 0.05) were significantly increased in combination with PRF. In addition, bone morphogenic protein was expressed significantly higher when xenogeneic material was combined with PRF in comparison to HOB alone (each p = 0.05). In summary, the combination of PRF with different BSM increases initial viability and may influence early proliferation and migration potential of osteoblast via RUNX2, alkaline phosphatase, collagen, and BMP2 especially in combination with alloplastic and xenogeneic BSM. Biofunctionalization of BSM using PRF might improve osteogenesis and extend the range of indications.
year | journal | country | edition | language |
---|---|---|---|---|
2021-03-16 | Frontiers in Bioengineering and Biotechnology |