6533b7dbfe1ef96bd12714f5

RESEARCH PRODUCT

A Coupled Solid-Fluid Method for Modeling Subduction

Gabriele MorraKlaus Regenauer-lieb

subject

PhysicsSolid geometry010504 meteorology & atmospheric sciencesNumerical analysisMechanicsDissipation010502 geochemistry & geophysicsCondensed Matter PhysicsSecondary flow01 natural sciencesFinite element methodPhysics::GeophysicsPhysics::Fluid DynamicsClassical mechanicsDragFluid–structure interactionPhysical SciencesBoundary element method0105 earth and related environmental sciences

description

International audience; We present a novel dynamic approach for solid/fluid coupling by joining two different numerical methods: Boundary Element Method (BEM) and Finite Element Method (FEM). FEM results describe the thermo-mechanical evolution of the solid while the fluid is solved with the BEM. The bidirectional feedback between the two domains evolves along a Lagrangian interface where the FEM domain is embedded inside the BEM domain. The feedback between the two codes is based on the calculation of a specific drag tensor for each boundary/finite element. The approach is presented here to solve the complex problem of the descent of a cold subducting oceanic plate into a hot fluid like mantle. The coupling technique is shown to maintain the proper energy dissipation caused by the important secondary induced mantle flow induced by the lateral migrating of the subducting plate. We show how the method can be successfully applied for modelling the feedback between deformation of the oceanic plate and the induced mantle flow. We find that the mantle flow drag is singular at the edge of the retreating plate causing a distinct hook shape. In Nature such hooks can be observed at the northern end of the Tonga trench and at the southern South-American trench perimeter.

10.1080/14786430500256359https://hal.archives-ouvertes.fr/hal-00513577