6533b7dcfe1ef96bd1271d85

RESEARCH PRODUCT

Quasistationary solutions of self-gravitating scalar fields around black holes

Nicolas Sanchis-gualJosé A. FontJuan Carlos DegolladoPedro J. Montero

subject

PhysicsNuclear and High Energy PhysicsScalar (mathematics)Black holeGeneral Relativity and Quantum Cosmologysymbols.namesakeNumerical relativityClassical mechanicsTheory of relativitysymbolsCircular symmetryEinsteinScalar fieldKlein–Gordon equation

description

Recent perturbative studies have shown the existence of long-lived, quasistationary configurations of scalar fields around black holes. In particular, such configurations have been found to survive for cosmological time scales, which is a requirement for viable dark matter halo models in galaxies based on such types of structures. In this paper we perform a series of numerical relativity simulations of dynamical nonrotating black holes surrounded by self-gravitating scalar fields. We solve numerically the coupled system of equations formed by the Einstein and the Klein-Gordon equations under the assumption of spherical symmetry using spherical coordinates. Our results confirm the existence of oscillating, long-lived, self-gravitating scalar field configurations around nonrotating black holes in highly dynamical spacetimes with a rich scalar field environment. Our numerical simulations are long-term stable and allow for the extraction of the resonant frequencies to make a direct comparison with results obtained in the linearized regime. A by-product of our simulations is the existence of a degeneracy in plausible long-lived solutions of Einstein equations that would induce the same motion of test particles, either with or without the existence of quasibound states.

https://doi.org/10.1103/physrevd.91.043005