6533b7dcfe1ef96bd1271e82
RESEARCH PRODUCT
Shape optimization for Stokes problem with threshold slip boundary conditions
Jan StebelRaino A. E. MäkinenJaroslav Haslingersubject
kitkaOptimization problemfrictionfinite element methodBézier curve02 engineering and technologySlip (materials science)variational inequality01 natural sciencesPhysics::Fluid Dynamics0202 electrical engineering electronic engineering information engineeringDiscrete Mathematics and CombinatoricsShape optimizationBoundary value problem0101 mathematicsform (structural)Mathematicsta113matematiikkamathematicsApplied Mathematicsta111010102 general mathematicsMathematical analysisStokes flowFinite element methodelementtimenetelmäClassical mechanicsStokes problemshape optimizationVariational inequality020201 artificial intelligence & image processingfriction boundary conditionAnalysisdescription
This paper deals with shape optimization of systems governed by the Stokes flow with threshold slip boundary conditions. The stability of solutions to the state problem with respect to a class of domains is studied. For computational purposes the slip term and impermeability condition are handled by a regularization. To get a finite dimensional optimization problem, the optimized part of the boundary is described by B´ezier polynomials. Numerical examples illustrate the computational efficiency. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 | Discrete & Continuous Dynamical Systems - S |