6533b7dcfe1ef96bd1271ebb
RESEARCH PRODUCT
Simple differential equations for Feynman integrals associated to elliptic curves
Stefan Weinzierlsubject
High Energy Physics - TheoryClass (set theory)Current (mathematics)Feynman integralDifferential equationFOS: Physical sciencesHigh Energy Physics - PhenomenologyElliptic curveHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)System of differential equationsSimple (abstract algebra)ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONMathematicsMathematical physicsdescription
The $\varepsilon$-form of a system of differential equations for Feynman integrals has led to tremendeous progress in our abilities to compute Feynman integrals, as long as they fall into the class of multiple polylogarithms. It is therefore of current interest, if these methods extend beyond the case of multiple polylogarithms. In this talk I discuss Feynman integrals, which are associated to elliptic curves and their differential equations. I show for non-trivial examples how the system of differential equations can be brought into an $\varepsilon$-form. Single-scale and multi-scale cases are discussed.
year | journal | country | edition | language |
---|---|---|---|---|
2019-12-05 | Proceedings of 14th International Symposium on Radiative Corrections — PoS(RADCOR2019) |