6533b7dcfe1ef96bd12721dc

RESEARCH PRODUCT

Estimating biophysical variable dependences with kernels

Gustau Camps-vallsValero LaparraDevis TuiaJesús Malo

subject

Mathematical optimizationHilbert spaceKernel methodsEstimatorDependence estimationMutual informationChlorophyll concentrationNonlinear systemsymbols.namesakeKernel methodNorm (mathematics)symbolsApplied mathematicsRandom variableMathematics

description

This paper introduces a nonlinear measure of dependence between random variables in the context of remote sensing data analysis. The Hilbert-Schmidt Independence Criterion (HSIC) is a kernel method for evaluating statistical dependence. HSIC is based on computing the Hilbert-Schmidt norm of the cross-covariance operator of mapped samples in the corresponding Hilbert spaces. The HSIC empirical estimator is very easy to compute and has good theoretical and practical properties. We exploit the capabilities of HSIC to explain nonlinear dependences in two remote sensing problems: temperature estimation and chlorophyll concentration prediction from spectra. Results show that, when the relationship between random variables is nonlinear or when few data are available, the HSIC criterion outperforms other standard methods, such as the linear correlation or mutual information.

https://doi.org/10.1109/igarss.2010.5651508