6533b7dcfe1ef96bd1272927
RESEARCH PRODUCT
On the uniqueness of the space-time energy in General Relativity. The illuminating case of the Schwarzschild metric
Ramon LapiedraJuan Antonio Morales-lladosasubject
PhysicsGravitacióPhysics and Astronomy (miscellaneous)General relativitySpace timemedia_common.quotation_subjectGaussFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)InfinitySpace (mathematics)General Relativity and Quantum CosmologyRelativitat general (Física)Schwarzschild metricUniquenessEnergy (signal processing)media_commonMathematical physicsdescription
The case of asymptotic Minkowskian space-times is considered. A special class of asymptotic rectilinear coordinates at the spatial infinity, related to a specific system of free falling observers, is chosen. This choice is applied in particular to the Schwarzschild metric, obtaining a vanishing energy for this space-time. This result is compared with the result of some known theorems on the uniqueness of the energy of any asymptotic Minkowskian space, showing that there is no contradiction between both results, the differences becoming from the use of coordinates with different operational meanings. The suitability of Gauss coordinates when defining an {\em intrinsic} energy is considered and it is finally concluded that a Schwarzschild metric is a particular case of space-times with vanishing {\em intrinsic} 4-momenta.
year | journal | country | edition | language |
---|---|---|---|---|
2013-01-01 |