6533b7dcfe1ef96bd1272950

RESEARCH PRODUCT

Gravitational waves from binary black hole mergers surrounded by scalar field clouds: Numerical simulations and observational implications

Nicolas Sanchis-gualJuan Carlos DegolladoSuvadeep BoseSuvadeep BoseAnshu GuptaJosé A. FontSunil Choudhary

subject

PhysicsParticle physics010308 nuclear & particles physicsGravitational waveFOS: Physical sciencesField strengthGeneral Relativity and Quantum Cosmology (gr-qc)Type (model theory)01 natural sciencesGeneral Relativity and Quantum CosmologyLIGOGeneral Relativity and Quantum CosmologyAmplitudeBinary black hole0103 physical sciences010306 general physicsScalar fieldBoson

description

We show how gravitational-wave observations of binary black hole (BBH) mergers can constrain the physical characteristics of a scalar field cloud parameterized by mass $\tilde{\mu}$ and strength $\phi_0$ that may surround them. We numerically study the inspiraling equal-mass, non-spinning BBH systems dressed in such clouds, focusing especially on the gravitational-wave signals emitted by their merger-ringdown phase. These waveforms clearly reveal that larger values of $\tilde{\mu}$ or $\phi_0$ cause bigger changes in the amplitude and frequency of the scalar-field-BBH ringdown signals. We show that the numerical waveforms of scalar-field-BBHs can be modelled as chirping sine-Gaussians, with matches in excess of 95%. This observation enables one to employ computationally expensive Bayesian studies for estimating the parameters of such binaries. Using our chirping sine-Gaussian signal model we establish that observations of BBH mergers at a distance of 450 Mpc will allow to distinguish BBHs without any scalar field from those with a field strength $\phi_0 \gtrsim 5.5\times 10^{-3}$, at any fixed value of $\tilde \mu \in [0.3,0.8]$, with 90% confidence or better, in single detectors with Advanced LIGO/Virgo type sensitivities. This provides hope for the possibility of determining or constraining the mass of ultra-light bosons with gravitational-wave observations of BBH mergers.

https://dx.doi.org/10.48550/arxiv.2010.00935