6533b7dcfe1ef96bd1272a70

RESEARCH PRODUCT

Spin–orbit coupling effects on the electronic properties of the pressure-induced superconductor CrAs

Carmine AutieriMario CuocoGiuseppe CuonoGiuseppe GuarnacciaAdolfo AvellaFilomena ForteCanio Noce

subject

SuperconductivityPhysicsCondensed matter physicsCondensed Matter - SuperconductivityFOS: Physical sciencesGeneral Physics and AstronomyFermi surface02 engineering and technologyElectronSpin–orbit interaction021001 nanoscience & nanotechnology01 natural sciencesSuperconductivity (cond-mat.supr-con)symbols.namesake0103 physical sciencesHomogeneous spacesymbolsGeneral Materials SciencePhysical and Theoretical Chemistry010306 general physics0210 nano-technologyElectronic band structureHamiltonian (quantum mechanics)Electronic properties

description

We present the effects of spin-orbit coupling on the low-energy bands and Fermi surface of the recently discovered pressure-induced superconductor CrAs. We apply the L\"owdin down-folding procedure to a tight-binding hamiltonian that includes the intrinsic spin-orbit interaction, originating from the Cr 3d electrons as well as from As 4p ones. Our results indicate that As contributions have negligible effects, whereas the modifications to the band structure and the Fermi surface can be mainly ascribed to the Cr contribution. We show that the inclusion of the spin-orbit interaction allows for a selective removal of the band degeneracy due to the crystal symmetries, along specific high symmetry lines. Such release of the band degeneracy naturally determines a reconstruction of the Fermi surface, including the possibility of changing the number of pockets.

https://doi.org/10.1140/epjst/e2019-800194-2