6533b7dcfe1ef96bd1272cbc

RESEARCH PRODUCT

On the propagation of a perturbation in an anharmonic system

S. Di RuzzaPaolo ButtàEmanuele CagliotiCarlo Marchioro

subject

Thermal equilibriumPhysicsAnharmonicityTime evolutionAnharmonic crystals; Propagation velocity; Statistical and Nonlinear Physics; Mathematical PhysicsPerturbation (astronomy)FOS: Physical sciencesStatistical and Nonlinear Physicsanharmonic crystals; propagation velocityMathematical Physics (math-ph)Upper and lower bounds82C05 82D20Classical mechanicsPropagation velocityAnharmonic crystalsSettore MAT/07 - Fisica MatematicaMathematical Physics

description

We give a not trivial upper bound on the velocity of disturbances in an infinitely extended anharmonic system at thermal equilibrium. The proof is achieved by combining a control on the non equilibrium dynamics with an explicit use of the state invariance with respect to the time evolution.

https://dx.doi.org/10.48550/arxiv.math-ph/0607023