6533b7dcfe1ef96bd1273234
RESEARCH PRODUCT
Hodge Theory and Algebraic Cycles
Stefan Müller-stachsubject
Pure mathematicsIntersection theorymedicine.medical_specialtyHodge theoryAlgebraic cycleHodge conjectureDeligne cohomologyMathematics::Algebraic GeometryMathematics::K-Theory and HomologyAlgebraic surfacemedicineProjective varietyHodge structureMathematicsdescription
Algebraic cycles and Hodge theory, in particular Chow groups, Deligne cohomology and the study of cycle class maps were some of the themes of the Schwerpunkt ”Globale Methoden in der Komplexen Geometrie”. In this survey we report about several projects around the structure of (higher) Chow groups CH(X,n) [3] which the author has studied with his coauthors during this time by using different methods. In my opinion there are two interesting view points: first the internal structure of higher Chow groups, i.e., the existence of interesting elements and nontriviality of parts of their Bloch-Beilinson filtrations. This case has arithmetic and geometric features, and the groups in question show different properties depending whether X is the spectrum of a field or a local ring resp. a higher dimensional projective variety. The second point of view is the study of maps
year | journal | country | edition | language |
---|---|---|---|---|
2006-09-28 |