6533b7dcfe1ef96bd12733ec
RESEARCH PRODUCT
The Hamilton–Jacobi Equation
Walter DittrichMartin Reutersubject
Dispersionless equationCombinatoricsPhysicsOmega equationCharacteristic equationCanonical transformationSummation equationCahn–Hilliard equationKadomtsev–Petviashvili equationHamilton–Jacobi equationdescription
We already know that canonical transformations are useful for solving mechanical problems. We now want to look for a canonical transformation that transforms the 2N coordinates (q i , p i ) to 2N constant values (Q i , P i ), e.g., to the 2N initial values \((q_{i}^{0},p_{i}^{0})\) at time t = 0. Then the problem would be solved, q = q(q0, p0, t), p = p(q0, p0, t).
year | journal | country | edition | language |
---|---|---|---|---|
2001-01-01 |