6533b7dcfe1ef96bd12734fd

RESEARCH PRODUCT

Parameter-free density functional for the correlation energy in two dimensions

Cesar Ramon ProettoEsa RäsänenStefano Pittalis

subject

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsElectronic correlationStrongly Correlated Electrons (cond-mat.str-el)Orbital-free density functional theoryReference data (financial markets)FOS: Physical sciencesElectronCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCondensed Matter - Strongly Correlated ElectronsQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Density functional theoryStatistical physicsLocal-density approximationFermi gasEnergy (signal processing)

description

Accurate treatment of the electronic correlation in inhomogeneous electronic systems, combined with the ability to capture the correlation energy of the homogeneous electron gas, allows to reach high predictive power in the application of density-functional theory. For two-dimensional systems we can achieve this goal by generalizing our previous approximation [Phys. Rev. B 79, 085316 (2009)] to a parameter-free form, which reproduces the correlation energy of the homogeneous gas while preserving the ability to deal with inhomogeneous systems. The resulting functional is shown to be very accurate for finite systems with an arbitrary number of electrons with respect to numerically exact reference data.

https://dx.doi.org/10.48550/arxiv.1002.3677