6533b7dcfe1ef96bd1273530
RESEARCH PRODUCT
Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies
Aytan MusayevaYue RuanSubao JiangAdrian Gerickesubject
0301 basic medicineCell signalingProgrammed cell deathPhysiologyClinical BiochemistryInflammationReviewmedicine.disease_causeBiochemistryProinflammatory cytokine03 medical and health sciences0302 clinical medicinemedicineoxidative stressEndothelial dysfunctionMolecular Biologyreactive oxygen speciesRetinabusiness.industrylcsh:RM1-950Cell Biologymedicine.diseaseCell biology030104 developmental biologymedicine.anatomical_structurelcsh:Therapeutics. Pharmacology030221 ophthalmology & optometryTumor necrosis factor alpharetinal diseasemedicine.symptombusinessvascular endotheliumOxidative stressdescription
Many retinal diseases, such as diabetic retinopathy, glaucoma, and age-related macular (AMD) degeneration, are associated with elevated reactive oxygen species (ROS) levels. ROS are important intracellular signaling molecules that regulate numerous physiological actions, including vascular reactivity and neuron function. However, excessive ROS formation has been linked to vascular endothelial dysfunction, neuron degeneration, and inflammation in the retina. ROS can directly modify cellular molecules and impair their function. Moreover, ROS can stimulate the production of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) causing inflammation and cell death. However, there are various compounds with direct or indirect antioxidant activity that have been used to reduce ROS accumulation in animal models and humans. In this review, we report on the physiological and pathophysiological role of ROS in the retina with a special focus on the vascular system. Moreover, we present therapeutic approaches for individual retinal diseases targeting retinal signaling pathways involving ROS.
year | journal | country | edition | language |
---|---|---|---|---|
2020-08-17 | Antioxidants |