6533b7dcfe1ef96bd12735a1

RESEARCH PRODUCT

Expanding the Active Inference Landscape: More Intrinsic Motivations in the Perception-Action Loop

Martin BiehlChristian GuckelsbergerChristoph SalgeChristoph SalgeSimón C. SmithSimón C. SmithDaniel Polani

subject

FOS: Computer and information sciencesComputer scienceComputer Science - Artificial Intelligencepredictive informationBiomedical EngineeringInferenceSystems and Control (eess.SY)02 engineering and technologyAction selectionI.2.0; I.2.6; I.5.0; I.5.1lcsh:RC321-57103 medical and health sciences0302 clinical medicineactive inferenceArtificial IntelligenceFOS: Electrical engineering electronic engineering information engineering0202 electrical engineering electronic engineering information engineeringFormal concept analysisMethodsperception-action loopuniversal reinforcement learningintrinsic motivationlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryFree energy principleCognitive scienceRobotics and AII.5.0I.5.1I.2.6Partially observable Markov decision processI.2.0Artificial Intelligence (cs.AI)Action (philosophy)empowermentIndependence (mathematical logic)free energy principleComputer Science - Systems and Control020201 artificial intelligence & image processingBiological plausibility62F15 91B06030217 neurology & neurosurgeryvariational inference

description

Active inference is an ambitious theory that treats perception, inference and action selection of autonomous agents under the heading of a single principle. It suggests biologically plausible explanations for many cognitive phenomena, including consciousness. In active inference, action selection is driven by an objective function that evaluates possible future actions with respect to current, inferred beliefs about the world. Active inference at its core is independent from extrinsic rewards, resulting in a high level of robustness across e.g.\ different environments or agent morphologies. In the literature, paradigms that share this independence have been summarised under the notion of intrinsic motivations. In general and in contrast to active inference, these models of motivation come without a commitment to particular inference and action selection mechanisms. In this article, we study if the inference and action selection machinery of active inference can also be used by alternatives to the originally included intrinsic motivation. The perception-action loop explicitly relates inference and action selection to the environment and agent memory, and is consequently used as foundation for our analysis. We reconstruct the active inference approach, locate the original formulation within, and show how alternative intrinsic motivations can be used while keeping many of the original features intact. Furthermore, we illustrate the connection to universal reinforcement learning by means of our formalism. Active inference research may profit from comparisons of the dynamics induced by alternative intrinsic motivations. Research on intrinsic motivations may profit from an additional way to implement intrinsically motivated agents that also share the biological plausibility of active inference.

http://arxiv.org/abs/1806.08083