6533b7ddfe1ef96bd12735eb

RESEARCH PRODUCT

A note on topological dimension, Hausdorff measure, and rectifiability

Enrico Le DonneGuy C. David

subject

Applied MathematicsGeneral Mathematics010102 general mathematicsMetric Geometry (math.MG)01 natural sciencesMeasure (mathematics)funktioteoriaCombinatoricsMetric spacesymbols.namesakeCompact spaceMathematics - Metric GeometryMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicssymbolsHausdorff measuremittateoria010307 mathematical physics0101 mathematicsLebesgue covering dimensionMathematics

description

The purpose of this note is to record a consequence, for general metric spaces, of a recent result of David Bate. We prove the following fact: Let $X$ be a compact metric space of topological dimension $n$. Suppose that the $n$-dimensional Hausdorff measure of $X$, $\mathcal H^n(X)$, is finite. Suppose further that the lower n-density of the measure $\mathcal H^n$ is positive, $\mathcal H^n$-almost everywhere in $X$. Then $X$ contains an $n$-rectifiable subset of positive $\mathcal H^n$-measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of Cs\"ornyei-Jones.

10.1090/proc/15051http://dx.doi.org/10.1090/proc/15051