6533b7ddfe1ef96bd1273e35
RESEARCH PRODUCT
Peripheral artery disease, redox signaling, oxidative stress – Basic and clinical aspects
Christine Espinola-kleinSebastian StevenThomas MünzelJörn F. DopheideAndreas Daibersubject
0301 basic medicineAntioxidantRedox signalingmedicine.medical_treatmentCellular differentiationClinical BiochemistryReview Article030204 cardiovascular system & hematologyPharmacologymedicine.disease_causeBiochemistrychemistry.chemical_compound0302 clinical medicineGene Regulatory Networks610 Medicine & healthlcsh:QH301-705.5chemistry.chemical_classificationlcsh:R5-920Anticholesteremic AgentsReactive Nitrogen Speciesmedicine.symptomlcsh:Medicine (General)Oxidation-ReductionPeroxynitriteSignal Transductionmedicine.medical_specialtyCell signalingAntioxidant therapy610 Medicine & healthNitric oxide03 medical and health sciencesPeripheral Arterial DiseasemedicineHumansExerciseReactive oxygen speciesbusiness.industryOrganic ChemistryClaudication and critical limb ischemiaWalking distanceIntermittent claudicationSurgeryOxidative Stress030104 developmental biologychemistrylcsh:Biology (General)Peripheral artery (occlusive) diseasebusinessReactive Oxygen SpeciesOxidative stressdescription
Reactive oxygen and nitrogen species (ROS and RNS, e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. At higher concentrations, ROS and RNS lead to oxidative stress and oxidative damage of biomolecules (e.g. via formation of peroxynitrite, fenton chemistry). Peripheral artery disease (PAD) is characterized by severe ischemic conditions in the periphery leading to intermittent claudication and critical limb ischemia (end stage). It is well known that redox biology and oxidative stress play an important role in this setting. We here discuss the major pathways of oxidative stress and redox signaling underlying the disease progression with special emphasis on the contribution of inflammatory processes. We also highlight therapeutic strategies comprising pharmacological (e.g. statins, angiotensin-converting enzyme inhibitors, phosphodiesterase inhibition) and non-pharmacological (e.g. exercise) interventions. Both of these strategies induce potent indirect antioxidant and anti-inflammatory mechanisms that may contribute to an improvement of PAD associated complications and disease progression by removing excess formation of ROS and RNS (e.g. by ameliorating primary complications such as hyperlipidemia and hypertension) as well as the normalization of the inflammatory phenotype suppressing the progression of atherosclerosis. Keywords: Oxidative stress, Redox signaling, Peripheral artery (occlusive) disease, Claudication and critical limb ischemia, Walking distance, Antioxidant therapy
year | journal | country | edition | language |
---|---|---|---|---|
2017-08-01 | Redox Biology |