6533b7ddfe1ef96bd1274187
RESEARCH PRODUCT
One-Dimensional Convolutional Neural Networks Combined with Channel Selection Strategy for Seizure Prediction Using Long-Term Intracranial EEG
Xiaoshuang WangGuanghui ZhangYing WangLin YangZhanhua LiangFengyu Congsubject
convolutional neural network (CNN)channel selectionintracranial electroencephalogram (iEEG)signaalinkäsittelyseizure predictionsairauskohtauksetsignaalianalyysineuroverkotEEGepilepsiadescription
Seizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous studies generally used the iEEG signals of all channels to predict seizures, ignoring the consideration of channel selection. In this study, a method of one-dimensional convolutional neural networks (1D-CNN) combined with channel selection strategy was proposed for seizure prediction. First, we used 30-s sliding windows to segment the raw iEEG signals. Then, the 30-s iEEG segments, which were in three channel forms (single channel, channels only from seizure onset or free zone and all channels from seizure onset and free zones), were used as the inputs of 1D-CNN for classification, and the patient-specific model was trained. Finally, the channel form with the best classification was selected for each patient. The proposed method was evaluated on the Freiburg Hospital iEEG dataset. In the situation of seizure occurrence period (SOP) of 30min and seizure prediction horizon (SPH) of 5min, 98.60% accuracy, 98.85% sensitivity and 0.01/h false prediction rate (FPR) were achieved. In the situation of SOP of 60min and SPH of 5min, 98.32% accuracy, 98.48% sensitivity and 0.01/h FPR were attained. Compared with the many existing methods using the same iEEG dataset, our method showed a better performance. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2022-01-01 |